Deep Voice 2: Multi-Speaker Neural Text-to-Speech

نویسندگان

  • Andrew Gibiansky
  • Sercan Ömer Arik
  • Gregory Frederick Diamos
  • John Miller
  • Kainan Peng
  • Wei Ping
  • Jonathan Raiman
  • Yanqi Zhou
چکیده

We introduce a technique for augmenting neural text-to-speech (TTS) with lowdimensional trainable speaker embeddings to generate different voices from a single model. As a starting point, we show improvements over the two state-ofthe-art approaches for single-speaker neural TTS: Deep Voice 1 and Tacotron. We introduce Deep Voice 2, which is based on a similar pipeline with Deep Voice 1, but constructed with higher performance building blocks and demonstrates a significant audio quality improvement over Deep Voice 1. We improve Tacotron by introducing a post-processing neural vocoder, and demonstrate a significant audio quality improvement. We then demonstrate our technique for multi-speaker speech synthesis for both Deep Voice 2 and Tacotron on two multi-speaker TTS datasets. We show that a single neural TTS system can learn hundreds of unique voices from less than half an hour of data per speaker, while achieving high audio quality synthesis and preserving the speaker identities almost perfectly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

Linear networks based speaker adaptation for speech synthesis

Speaker adaptation methods aim to create fair quality synthesis speech voice font for target speakers while only limited resources available. Recently, as deep neural networks based statistical parametric speech synthesis (SPSS) methods become dominant in SPSS TTS back-end modeling, speaker adaptation under the neural network based SPSS framework has also became an important task. In this paper...

متن کامل

Recognition of Dysarthric Speech Using Voice Parameters for Speaker Adaptation and Multi-Taper Spectral Estimation

Dysarthria is a motor speech disorder resulting from impairment in muscles responsible for speech production, often characterized by slurred or slow speech resulting in low intelligibility. With speech based applications such as voice biometrics and personal assistants gaining popularity, automatic recognition of dysarthric speech becomes imperative as a step towards including people with dysar...

متن کامل

Machine Speech Chain with One-shot Speaker Adaptation

In previous work, we developed a closed-loop speech chain model based on deep learning, in which the architecture enabled the automatic speech recognition (ASR) and text-to-speech synthesis (TTS) components to mutually improve their performance. This was accomplished by the two parts teaching each other using both labeled and unlabeled data. This approach could significantly improve model perfo...

متن کامل

Voice Conversion Based on Speaker-Dependent Restricted Boltzmann Machines

This paper presents a voice conversion technique using speaker-dependent Restricted Boltzmann Machines (RBM) to build highorder eigen spaces of source/target speakers, where it is easier to convert the source speech to the target speech than in the traditional cepstrum space. We build a deep conversion architecture that concatenates the two speakerdependent RBMs with neural networks, expecting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017